A Phase Ib study of NUC-1031 and carboplatin combination for patients with recurrent ovarian cancer

Sarah Blagden^{1,2}, Ajithkumar Sukumaran², Chathunissa Gnanaranjan³, Victoria Woodcock¹, Magdalena Slusarczyk⁴, Michaela Serpi⁴, David Harrison⁵, Mark Middleton¹, Hani Gabra², Essam Ghazaly³

1) Early Phase Trials Unit, Department of Oncology, University of Oxford, UK 2) Department of Oncology, Hammersmith Hospital, Imperial College, London, UK 3) Centre for Haemato-Oncology, Barts Cancer Institute, London, UK 4) School of Pharmacy and Pharmaceutical Sciences, Cardiff University, UK 5) School of Medicine, University of St Andrews, UK

BACKGROUND

- Resistance to chemotherapy reduces patient survival
- Limited effective treatment for recurrent ovarian cancer
- Requirement for new agents and combinations

ProTides: NucleoTide Analogues

- Overcome cancer drug resistance
- New class of anti-cancer agents
- Innovative phosphoramidate chemistry
- Broad clinical utility

NUC-1031: The First Anti-Cancer ProTide

- A ProTide transformation of gemcitabine
- Overcomes all the known gemcitabine resistance mechanisms:
- Cellular uptake independent of nucleoside transporters (hENT1)
- Activation independent of deoxycytidine kinase (dCK)
- Protected from inactivation by cytidine deaminase (CDA)
- Greater stability
- Reduction in potentially toxic metabolites

NUC-1031: First-in-Human Study

- Strong efficacy signal⁽¹⁾ including patients with ovarian cancer⁽²⁾ 90% Disease Control Rate (PR 1: SD 8: n=10)
- Progression Free Survival 8.3 months
- Well tolerated
- No unexpected Adverse Events (AEs)
- Manageable myelosuppression & reversible transaminase elevation
- · Generates high intracellular levels of the active anti-cancer metabolite, dFdCTP
- 27x greater AUC of dFdCTP than gemcitabine (AUC_{0.24b}: 4.4 nmo]/10⁶ ce||s.hr vs. 0.16 nmo]/10⁶ ce||s.hr)

igure 1. NUC-1031 bypasses all the known cancer resistance pathways to gemcitabine

STUDY DESIGN

Objectives Primary

- Determine recommended Phase II dose (RP2D) of NUC-1031 and carboplatin combination
- Secondary
- Evaluate safety profile and tolerability Evaluate Objective Response Rate
- Evaluate Disease Control Rate
- Evaluate Progression Free Survival
- Evaluate Pharmacokinetics Profile

• Sequential dose-escalating cohorts (3 + 3 design), with NUC-1031 administered on days 1 & 8 with carboplatin on day 1, a3-weekly for 6 cycles

Patient Population

- Patients aged ≥18 years with epithelial cancer of the ovary, fallopian tube or primary peritoneum
- Relapsed having previously received platinum-containing chemotherapy regimen

RESULTS

Patient Characteristics

- 22 patients
- Median age 65 years (range 37-77)
- Median 3 prior chemotherapy regimens (range 2-6)
- 17 patients platinum resistant including 7 refractory; 4 partially platinum sensitive; 1 platinum sensitive
- 16 patients had high grade serous carcinomas
 20/22 patients evaluable for efficacy (received ≥2 cycles + CT scan)

Plasma

NUC-1031 PK profile remains consistent when administered in combination with carboplatin or as a single agent (combination vs. single agent; all values normalised to 500 mg/m² dose) • AUC_{0.24h}: 144.7 μM.hr vs. 137.6 μM.hr

- T_{1/2}: 4.6 hours vs. 4.8 hours
- CL: 3.4 L vs. 3.5 L
- V_d: 0.049 L/Kg vs. 0.043 L/Kg

Figure 2. Plasma levels of NUC-1031, dFdC and dFdU over time

Intracellular dFdCTP

Levels of active metabolite, dFdCTP, are further increased when NUC-1031 is combined with carboplatin

- 97% increase in dFdCTP AUC (208.7 µM/maTP.hour normalised to 500 ma/m² dose)
- 40% increase in dFdCTP C_{max}

(14.9 µM/maTP normalised to 500 ma/m² dosel

Figure 3. Intracellular dFdCTP levels achieved by NUC-1031 + carboplatin compared to single agent NUC-1031. Doses normalised to 500 mg/m

Safety Profile

dvspnoea

- NUC-1031 + carboplatin well tolerated No unexpected adverse events reported
- 5 Dose Limiting Toxicities (DLTs) in 4 patients
- 2 thrombocytopaenia Grade 4
- (NUC-1031 625 ma/m² and 750 ma/m² + carboplatin AUC4)
- 2 fatique Grade 3 (NUC-1031 625 mg/m² + carboplatin AUC4)
- 1 neutropaenia Grade 4 (NUC-1031 750 mg/m² + carboplatin AUC4)
- 9 Serious Adverse Events reported in 7 patients: fatigue, thrombocytopaenia (3), infection, vomiting, hyponatraemia, urinary tract infection, respiratory tract infection and
- No DLTs in NUC-1031 500 mg/m² + carboplatin AUC5 cohort

AEs Grade 3 or 4*

Dose (NUC-1031 + carboplatin)	500mg/m ² + AUC5	625mg/m² + AUC4	750mg/m² + AUC4	750mg/m ² + AUC5
Patient Numbers	9	6	6	1
Neutropaenia	3	3	4	1
Leucopaenia	1	1	4	1
Lymphopaenia			3	
Thrombocytopaenia	3	2	2	
Anaemia	1	1	1	
Fatigue		3	2	

^{*} Occurring in ≥10% patients and considered definitely, probably or possibly related to treatme

- Strong efficacy signal for NUC-1031 + carboplatin
- 95% DCR in RECIST evaluable patients
- PFS 6.6 months durable & ongoing
- 74% of patients achieved >50% reduction in CA125***

- *** 8/14 patients with >50% reduction in CA125 confirmed ≥28 days late

Disease Control Rate RECIST

	All Patients (n=22)		Evaluable Patients* (n=20)		
	n	%	n	%	
Complete Response§	1	5	1	5	
Partial Response§	5	23	5	25	
Objective Response Rate	6	28	6	30	
Stable Disease	13	59	13	65	
Disease Control Rate	19	86	19	95	
#					

Disease Control Rate = CR + PR + SD

* Evaluable patients ≥2 Cycles of NUC-1031 + CT scan

§ 3/5 PR confirmed by CT scan ≥28 days later; CR unconfirmed

CONCLUSIONS

NUC-1031 + carboplatin combination • Regimen is efficacious

- ORR: 30%
- DCR: 95%
- PFS: 6.6 months durable & ongoing
- Regimen is well tolerated
- DLTs: myelosuppression & fatigue (transient)
- No unexpected AEs
- PK data suggest positive interaction between agents
- High intracellular levels of the active metabolite dFdCTP • RP2D: NUC-1031 500 mg/m² + carboplatin AUC5
- Future studies in platinum sensitive ovarian cancer planned