NUC-3373: A novel pyrimidine nucleotide analogue that overcomes all the main cancer drug resistance mechanisms that limit patient survival

Essam Ghazaly¹, Magdalena Slusarczyk², Michaela Serpi², Christopher McGuigan², David Harrison³ and Sarah Blagden⁴

1) Barts Cancer Institute, Queen Mary University of London, UK 2) School of Pharmacy & Pharmaceutical Sciences, Cardiff University, UK 3) School of Medicine, University of St Andrews, UK 4) Department of Oncology, University of Oxford, UK

BACKGROUND

NUC-3373

- Novel pyrimidine NucleoTide Analogue Preactivated form of the anti-cancer metabolite FdUMP
- ProTide: utilising innovative phosphoramidate chemistry
- Overcomes all the main mechanisms associated with 5-FU, FUDR and capecitabine resistance

5-FU Resistance Mechanisms

Poor drug activation

- Low Thymidine Kinase (TK)
- o TK required for 5-FU activation into active agent FdUMP
- o TK predominantly expressed during S-phase of cell cycle(1)
- High Thymidine Phosphorylase (TP
- o High levels of TP are associated with adverse survival outcome in colorectal cancer patients receiving 5-FU(2)

Extensive drua dearadation

- High Dihydropyrimidine Dehydrogenase (DPD)
- o 80% of 5-FU degraded by DPD
- o Elevated levels of DPD associated with lower overall survival in colorectal cancer patients receiving capecitabine(3)

Limited cellular uptake

• Low human Equilibrative Nucleoside Transporter 1 (hENT1) Nucleobase and nucleoside transporters required for 5-FU / FUDR cellular uptake

Weak target inhibition

- High Thymidylate Synthase (TS), a target of 5-FU
- o Elevated levels of TS are associated with poor survival in colorectal cancer
- o High TS is a predictive factor for poor response to 5-FU^[4]

Mycoplasma infection

- Approximately 55% of colorectal cancers are infected by Mycoplasma^[5]
- In cancer cell lines, Mycoplasma infection decreases 5-FU activity by up to $100x^{(6)}$

MODE OF ACTION / METABOLISM

NUC-3373 overcomes all the main 5-FU resistance pathways

Top: 5-FU, FUDR and capecitabine require active uptake and multi-step metabolism for conversion into the active anti-cancer agent FdUMP.

Bottom: NUC-3373 is a preactivated form of FdUMP bearing a phosphoramidate moiety (ProTide). NUC-3373 enters the cell independent of nucleoside transporters where the moiety is cleaved to release high levels of active FdUMP intracellularly which directly inhibits Thymidylate Synthase (TS) and induces apoptosis.

METHODS

Cytotoxicity

- Establish EC_{so} values in multiple cancer cells including 5-FU resistant lines
- Measure efficacy in resistance conditions using TK- and hENT1- cells
- Compare activity in Mycoplasma infected cancer cells

Metabolism

- · Quantify intracellular levels of the active moiety FdUMP in colorectal cancer
- Evaluate the effect of Dihydropyrimidine Dehydrogenase (DPD) on drug

• Validate activity in vivo utilising human colorectal cancer cells (HT29)

Toxicology

Conduct toxicology studies to establish safety profile

NUC-3373 is a potent anti-cancer agent

range of 5-FU sensitive and resistant cancer cell lines

Figure 2. Comparative anti-proliferative effect of NUC-3373 and 5-FU in colorectal, ovarian and lung cancer cell lines. EC50 values standardised for molecular weight

NUC-3373 overcomes all the main cancer resistance mechanisms

- Thymidine Kinase (TK)
- o FUDR activity is significantly impaired in TK deficient cancer cells whilst that of NUC-3373 is unchanged
- Thymidine Phosphorylase (TP)
- o NUC-3373 is resistant to TP degradation

of TK while FUDR loses activity in TK-deficient CEM human leukaemia cancer cell line.

was incubated with NUC-3373 and FUDR. NUC-3373 is resistant to TP dearadation while FUDR is significantly broken down by TP.

- Nucleoside Transporter (hENT1)
- o FUDR activity is reduced by 63x in hENT1-deficient cancer cells (CEM) while NUC-3373 maintains effective anti-proliferative activity
- o The cellular uptake of NUC-3373 is independent of nucleoside transporters

NUC-3373 is resistant to DPD degradation

• NUC-3373 demonstrates up to 330x greater activity than 5-FU across a broad • 5-FU levels are significantly elevated in the presence of a DPD inhibitor (gimeracil) while NUC-3373 levels remain unaffected

Figure 5. NUC-3373 and 5-FU levels in combined SW620, HCT-116 and HT29 colorectal cancer cell

NUC-3373 achieves high intracellular levels of active agent FdUMP

- FdUMP is the main active anti-cancer metabolite of 5-FU / FUDR
- NUC-3373 generates FdUMP intracellular levels 363x higher than 5-FU
- FdUMP levels generated by NUC-3373 remain high in all the key cancer resistance-like conditions (overexpression of TS, DPD, TP, OPRT, CDA)

Figure 6. Intracellular levels of FdUMP generated by NUC-3373 and 5-FU in human colorectal cancer cell

NUC-3373 activity is unaffected by Mycoplasma infection

 Unlike FUDR. NUC-3373 maintains activity in the presence of Mycoplasma

Anti-proliferative effect of NUC-3373 and FUDR in L1210

NUC-3373 demonstrates superior inhibition of tumour growth in vivo

- NUC-3373 achieves significantly greater reduction in tumour weight and volume than 5-FU in HT29 colorectal xenografts
- NUC-3373 significantly prolongs tumour volume doubling time compared to control (vehicle)

Figure 8. NUC-3373 and 5-FU effect on HT29 human colorectal cancer xenografts. Control = vehicle.

NUC-3373 demonstrates a favourable toxicology profile

- In formal toxicology studies NUC-3373 is significantly better tolerated than 5-FU
- The main toxicities associated with 5-FU after a single dose are not observed with NUC-3373 after single or repeat dosing using equivalent or higher levels
- NUC-3373 is rapidly distributed into tissues following IV bolus administration
- Plasma AUC ratios show low conversion of NUC-3373 into FUDR and dhFU (metabolite: NUC-3373 of 0.01 and 0.03 respectively)

Table 1 ALIC and C of NUC-3373 FLIDR and dhELL in plasma

rable 1.7 to and amax of 1 to a cor o, 1 obt and and o in plasma.			
	Analyte	Mean AUC _(0-i)	Mean C _{max}
	NUC-3373	1745.0 ng.h/ml	5295.0 ng/ml
	dhFU	38.5 ng.h/ml	38.6 ng/ml
	FUDR	18.7 ng.h/ml	24.1 ng/ml

Day 28 values dosed at 8mg/kg/day for 5 consecutive days

CONCLUSIONS

- NUC-3373 is a novel pyrimidine nucleotide analogue that overcomes all the main cancer resistance mechanisms associated with 5-FU, FUDR and capecitabine.
- Significantly greater anti-proliferative activity observed with NUC-3373 than 5-FU across a broad range of sensitive and resistant cancer cells including Mycoplasma
- NUC-3373 generates 363x higher intracellular levels of the active agent, FdUMP,
- NUC-3373 significantly decreases tumour weight and volume compared to 5-FU in vivo and is significantly better tolerated in toxicology studies.
- First In Human Phase I study of NUC-3373 will commence in Q4 2015
- Results demonstrate that NÚC-3373 has the potential to replace 5-FU as the standard of care for colorectal cancer and other solid tumours.