ACELANIA: Validating the RNAscope for molecular profiling of key biomarkers associated with gemcitabine resistance Barts

Essam A. Ghazaly¹, Chathunissa Gnanaranjan¹, Magdalena Slusarczyk², Peter Mullen³, David Harrison³, Bill Greenhalf⁴, Sarah P. Blagden⁵, John G. Gribben¹

¹ Centre for Haemato-Oncology, Barts Cancer Institute. Queen Mary University of London, United Kingdom; ² Cardiff School of Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom; 3 School of Pharmaceutical Sciences, Cardiff University of St Andrews, St Andrews, St Andrews, United Kingdom; 4 Molecular and Clinical Cancer Medicine, Royal Liverpool University Hospital, Liverpool, United Kingdom; 5 NIHR/Wellcome Trust Imperial Clinical Research Facility and Department of Oncology, Imperial College, London, United Kingdom

BACKGROUND

Gemcitabine & Biomarkers

- Mainstay of pancreatic cancer treatment
- Flawed prodrug: <10% response in patients
- Three key drug resistance mechanisms associated with poor survival prognosis (Table 1)
- No reliable assays for detection of these biomarkers available

Table 1. Impact of Cancer Resistance Mechanisms and Biomarkers

Biomarker	Cancer Resistance Mechanism	Outcome	Incidence
hENT1 (human equilibrative nucleoside transporter 1)	Low expression of membrane transporters	Poor uptake into the cancer ce ll s	50%
dCK (deoxycytidine kinase)	Low expression of activating enzymes	Low levels of the active agent	35%
CDA (cytidine deaminase)	High levels of metabolising enzymes	Rapid degradation of the drug	60%

Innovative Biomarkers Detection: RNAscope®

- In situ hybridization technology for RNA detection
- Superior sensitivity, specificity, visualisation and quantification (Figure 1)
- Rapid turn around: assay completed within a single day

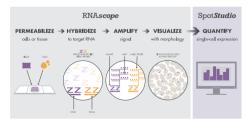


Figure 1. RNAscope procedure completed in less than 24h

Acelarin®: The First Anti-Cancer ProTide

- New generation anti-cancer agent: ProTide (NucleoTide Analoque)
- Overcomes key resistance mechanisms associated with gemcitabine
- Impressive and durable disease control in 88% of evaluable patients across 13 solid tumour types

- Generates 12x higher intracellular levels active agent dEdCTP
- Well tolerated with no unexpected adverse events
- Ongoing combination studies with carboplatin for ovarian cancer
- Phase III global studies planned in ovarian, biliary and pancreatic cancers

Mode of Action

- Acelarin is designed to overcome the key cancer resistance mechanisms (Figure 2)
 - Efficient uptake: hENT1-independent cellular uptake
 - Pre-activated: dCK-independent activation
- Greater Stability: CDA degradation resistant

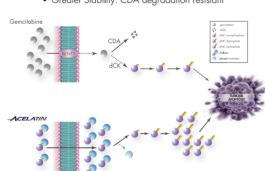


Figure 2. Acelarin overcomes the key gemcitabine resistance pathway.

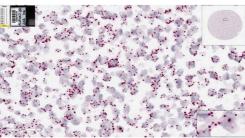
OBJECTIVES

- Assess RNAscope technology as reliable tool for biomarker detection
- Evaluate SpotStudio[™] technology as accurate method for biomarker quantification
- Measure key biomarkers associated with gemcitabine resistance
- Initiate the development of an FDA compliant molecular diagnostic tool
- Target optimal patient population for Acelarin treatment

PROCESS & METHODS

- Process for RNAscope/SpotStudio validation (Figure 3)
 - 3 Companies
 - 2 Cancer Research Institutes
- 2 Technologies

Abbomax • 5 Cancer cell lines • >200 slides Advanced Cell Diagnostics (ACD) Barts Cancer Linstitute RESULTS Third Party review Liverpool Institute of Translational Medicine


Figure 3. RNAscope technology assessment overview

- Formalin-fixed paraffin-embedded slides: 45 slides / cell line
- Cancer cell lines
- Pancreatic cancer: BxPC-3; MiaPaCa-2; Panc-1
- Lung cancer: H1703
- Ovarian Cancer: OVCAR-3
- RNAscop
 - Biomarkers signal visualisation in morphological context at 20x magnification (distinguishes tumour from healthy tissue in biopsies)
 - Specific Z probes to detect hENT1, dCK and CDA biomarkers
- SpotStudio
 - Spots per cell automated biomarkers signal quantification (ACD & Definiens)
- qRT-PC
- Industry gold standard in-solution method for RNA quantification
- Large dynamic range, high sensitivity and specificity
- Challenges
- Lacks morphological context
 Limited data reproducibility
- Limited data reproducibility

RESULTS

RNAscope specifically reveals biomarkers signals in morphological context

- Specific hENT1, dCK and CDA in situ hybridization (Figure 4)
- Strong and clear signal: low background

ure 4. RNAscope staining of dCK in MigPgCg-2 pancreatic cancer cells

SpotStudio rapidly and reproducibly measures biomarkers expressions

- dCK and hENT1 were expressed at medium to high levels: >5-25 spots/cell across cell lines (Figure 5)
- CDA was expressed at low levels: <5 spots/cell across cell lines

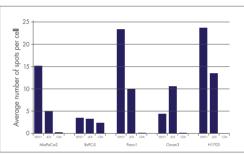


Figure 5. SpotStudio quantification of hENT1, dCK and CDA biomarkers in cancer cell lines

qRT-PCR quantification lacks morphological context

- Used as a reference methodology for biomarkers quantification and comparison with SpotStudio
- hENT1, dCK and CDA specific oligonucleotides were designed & validated
- hENT1 and dCK mean relative expression were medium to high (0.64 to 1.16 fold over GAPDH) across cell lines (Figure 6)
- CDA mean relative expression was low (0.34 fold over GAPDH) across cell lines

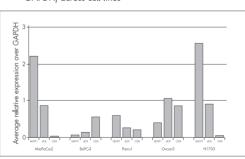


Figure 6. qRT-PCR quantification of hENT1, dCK and CDA biomarkers in cancer cell lines

Relationship between RNAscope/SpotStudio and aRT-PCR quantifications

- Third party independent assessment of data sets (Liverpool Institute of Translational Medicine)
- Results overlay showed a trend in biomarkers expression within individual cell lines (Figure 7)
- A positive correlation was observed between the two data sets for dCK (Figure 8)

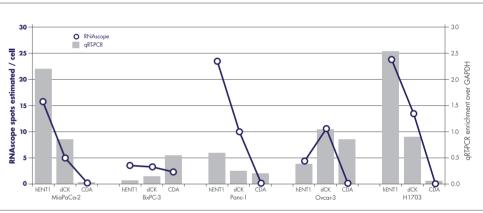


Figure 7. RNAscope and qRT-PCR biomarkers quantifications overlay

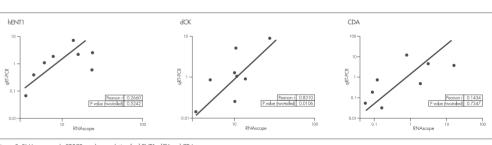


Figure 8. RNAscope and qRT-PCR results correlation for hENT1, dCK and CDA

CONCLUSIONS

- RNAscope is a promising assay for contextual detection of key RNA biomarkers
- SpotStudio is a reliable technology for biomarker quantification
- Specific RNAscope probes for hENT1, dCK and CDA biomarkers have been validated
- Expression levels for hENT1, dCK and CDA by SpotStudio have been measured in multiple cancer cell lines
- Predictive clinical thresholds are currently being evaluated for each biomarker
- This molecular diagnostic assay may facilitate patient selection for treatment with Acelarin

Cancer Institute